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1 Introduction

In spring 2020, we started the second Proof of Concept (PoC) engagement with the Google
Cloud team; see for the plans. Section 2 reports on the batch Data Release Pro-
duction (DRP) processing on Google Cloud Platform (GCP) and its cost. Section E reports on
data transfer testing between Chile and Google Cloud Storage (GCS).

2 DRP Processing

2.1 System Architecture and Technology Stack
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FIGURE 1: Architecture diagram of the overall system

The overall system architecture is shown in Figure E| All components are hosted on GCP
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except Terraform, which is infrastructure as code running from a laptop. The LSST Science
Pipelines Software Stack contains the applications for image processing and analysis. A ma-
chine image based on a recent stack release together with other necessary software is built
using Packer scripts. The LSST Generation 3 Middleware, including Data Butler and Pipeline-
Task framework, is used for this PoC. The Butler datastore uses S3-interface-compliant stor-
age on GCS; objects are accessed using the boto3 library. The Butler registry is a Google Cloud
SQL PostgreSQL database. The usage of Data Butler is similar to the AWS PoC [DMTN-137],
but the stack version is new. Credentials of the GCS bucket and the PostgreSQL instance are
stored in Google Secret Manager. In the startup process of each machine, the credentials are
retrieved and stored in its local environments, which are used to access the GCS bucket and
the PostgreSQL instance.

Google Compute Engine (GCE) deployed via Terraform provides the compute resources. HT-
Condor is the underlying workload management system for batch jobs. Pegasus is used on
top of HTCondor for workflow submission and monitoring. The HTCondor pool is automati-
cally scaled with the load via a Managed Instance Group. The HTCondor execute machines,
or workers, can be either on-demand VMs or Preemptible VMs. HTCondor Annex is an alter-
native to acquire cloud compute resources, but we did not use HTCondor Annex yet in this
PoC due to time constraints (Section @). The stackdriver-based Cloud Monitoring and the
fluentd-based Cloud Logging services are turned on in the HTCondor cluster. Pipeline logs
are also sent to Cloud Logging so we can search and examine logs in the Logs Viewer for
troubleshooting.

2.2 Execution Results
2.2.1 Test Runs

Similar to DMTN-137, we first executed the ci_hsc workflow, scaled up to process one tract
of the HSC-RC2 dataset (DM-11345), and then the full HSC-RC2 dataset. So far, execution in-
volved some manual intervention steps and has not been fully automated yet. The overall
steps were: Butler repo setup, QuantumGraph generation, workflow generation, and job ex-
ecution. To create a Butler repo on GCP after creating the GCS bucket and the PostgresSQL
database, the bootstrap script athttps://github.com/1sst-dm/gen3-hsc-rc2 was run from the
Verification Cluster located at NCSA to transfer the data to the GCS bucket and populate the
Butler repo. We did not optimize this step and it took around 40 hours for the full HSC-RC2
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Task | Count | Mean Runtime (sec)

Init 1 27.0

IsrTask | 6765 58.6

CharacterizelmageTask | 6765 169.9
CalibrateTask | 6765 85.7

MakeWarpTask | 4206 68.6
CompareWarpAssembleCoaddTask 405 424.9
DetectCoaddSourcesTask 405 88.6
MergeDetectionsTask 81 152.6
DeblendCoaddSourcesSingleTask 405 276.1
MeasureMergedCoaddSourcesTask 405 2541.4
MergeMeasurementsTask 81 40.0
ForcedPhotCoaddTask 405 3780.1

Workflow wall time 8 hrs 52 mins

Cumulative job wall time 61 days 5 hrs

TaBLE 1: Task breakdown of the HSC-RC2 tract=9615 workflow for the 20200729T200516
run. There were 26688 pipeline jobs in total. The mean runtime was the time spent on the
resource as seen by Condor DAGMan. The minimum runtime of the Pipetasks was 7.5 sec
and the maximum was 6784.9 sec. The software stack was w_2020_30.

repo. It can be improved by copying the data to GCS first and creating the Butler repo from
GCE. We may also parallelize the ingestion process in the future.

In the Generation 3 Middleware, each executable unit is represented by a Quantum, and the
DRP workflow is represented as a Quantum Graph with Quanta interdependency. For the
execution workflow, we added one initialization job and translated Quanta into jobs in the
Pegasus format with one-to-one mapping. For simplicity we considered all jobs of MakeWarp-
Task, CompareWarpAssembleCoaddTask, DeblendCoaddSourcesSingleTask, and MeasureMergedCoad-
dSourcesTask as large-memory jobs and required 30GB of memory; all other jobs required 2
GB. Pegasus also added other necessary jobs to the execution workflow, such as data trans-
fer of Quantum files and log files. We used the submit node as the staging site, in the same
manner as the AWS PoC [DMTN-137].

With the LSST software stack version w_2020_30, the tract tract=9615 contains 26688 Pipeline-
Task Quanta. Table E| shows an example run; this is comparable to Table 1 in DMTN-137 and
most differences were likely resulted from the LSST software stack version differences.

The full HSC-RC2 dataset contains 3 tracts and around 1.5TB of input data, including 767 GB
of raw images. Currently we ignore narrow bands, so there are 404 visits in total. One full

DRAFT 3 DRAFT



Report of Google Cloud Proof of Concept 2020

Observatory

DMTN-157

Latest Revision 2020-08-26

Task | Total Count | Count1 | Count2 | Mean Runtime (sec)

Init 1 1 80.0

IsrTask 30278 | 30278 1 55.0

CharacterizelmageTask 30278 | 30277 1 129.2
CalibrateTask 30278 | 30277 1 74.7

MakeWarpTask 20182 | 20180 2 74.0
CompareWarpAssembleCoaddTask 1180 1178 2 700.3
DetectCoaddSourcesTask 1180 1178 2 105.2
MergeDetectionsTask 236 234 2 143.5
DeblendCoaddSourcesSingleTask 1180 1170 10 651.3
MeasureMergedCoaddSourcesTask 1180 1170 10 4426.7
MergeMeasurementsTask 236 234 2 40.7
ForcedPhotCoaddTask 1180 1170 10 6327.9

TABLE 2: Example task breakdown of the full HSC-RC2 workflow. There were 117388 pipeline
Quanta in total. The mean runtime is the time spent on the resource as seen by Condor
DAGMan in the 20200804T005441 + 20200806T041934 run using on-demand n1-standard-8
machines. Count 1 is the count from the first submission 20200804T005441; Count 2 is the
count from the second, rescue submission 20200806T041934. One IsrTask failed in the first
submission and was retried in the second submission. The software stack was w_2020_30.

HSC-RC2 workflow generates around 10TB of output data. Using the stack version w_2020_30,
the QuantumGraph generation took around 13 hours for the full HSC-RC2 dataset, resulted
in 117388 Quanta in total in our test workflow. We excluded patches that were not covered
in all filters; this was a workaround as CompareWarpAssembleCoaddTask did not write out empty
images which were expected in the QuantumGraph workflow. Scripts and pipeline configura-
tions can be found in https://github.com/1sst-dm/google-poc-2020/tree/master/drp. When
the workflow did not finish fully in one submission, we made a rescue workflow to run in an-
other submission. The rescue workflow only contained failed jobs or their dependents. Mak-
ing the rescue workflow required a manual step using a temporary patch in the pipe_base
package (DM-25809), and took around 12 hours on one CPU. Table P shows an example for
the full HSC-RC2 workflow.

For the compute nodes, we tested with GCP's first generation general-purpose machine types
(N1) as well as the second generation general-purpose machine types (N2). N2 provides better
price-performanance and is used in the IDF quotes. More specifically, the N1 machine n1-
standard-8 with 8 vCPUs and 30 GB of memory and the N2 machine n2-standard-8 with 8
vCPUs and 32 GB of memory were used.

The same HSC-RC2 workflow was run with multiple setups:
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Run Setup Max CPUs Workflow walltime Cumulative job time Compute cost
20200731T011149+20200802T164424 on-demand N1 workers 800 55 hrs 308 days $1592
20200804T005441+20200806T041934 preemptible N1 workers 1600 36 hrs 275 days, 22 hrs $459
20200806T215620+20200808T170615 preemptible N2 workers 1600 25 hrs 213 days, 10 hrs $390

20200811T172329 on-demand N2 workers 800 31 hrs 300 days, 2 hrs $1191
202008147002816+20200816T060623 preemptible N2 workers 1600 29 hrs 208 days, 22 hrs $388

TABLE 3: Run summary of the HSC-RC2 workflow with different setups. The workflow wall
time only includes Pegasus records, and may be dominated by random job failures and the
rescue graph. The costs are overestimates. The Postgres instance size was increased be-
tween the 20200802T164424 run and the 20200804T005441 run; it stayed the same after-
wards.

1. Using on-demand N1 VMs as workers. Maximum 800 CPUs (100 VMs) simultaneously.
2. Using on-demand N2 VMs as workers. Maximum 800 CPUs (100 VMs) simultaneously.
3. Using preemptible N1 VMs as workers. Maximum 1600 CPUs (200 VMs) simultaneously.

4. Using preemptible N2 VMs as workers. Maximum 1600 CPUs (200 VMs) simultaneously.

Table B summarizes the compute time of the runs. Non-preemptible instances were used as
HTCondor master and submit nodes.

2.2.2 Experienced Errors

1. GCS403 HTTP error. Since we started large scale testing in early July, random 403 errors
were received when Butler made HeadObject calls:

botocore.exceptions.ClientError: An error occurred (403) when calling the HeadObject operation: Forbidden

The stack interpreted it as

PermissionError: Forbidden HEAD operation error occurred. Verify s3:ListBucket and s3:GetObject permissions are granted
< for your IAM user.

However, the permission setup was the same for all jobs but only a very small fraction
of jobs encountered this. Butler did a HeadObject to check if an object existed before
attempting to upload. If the object did not exist it expected a 404 error. At the time we
used the v20 stack and did not retry failed HTTP requests. (A request-level retry using the
backoff library was added by Dom Zippilli afterwards.) A Google Cloud Support Ticket
was filed to investigate the root cause and concluded that there were transient issues at
the IAM server during the same timeframe. The instability of the IAM server was fixed
on July 22. We have not seen this error since.

2. Butler IntegrityError Conflicts of datasets were found occasionally when pipelines at-
tempted to write outputs, for example:

DRAFT 5 DRAFT



Report of Google Cloud Proof of Concept 2020 DMTN-157 Latest Revision 2020-08-26

Observatory

File "/opt/lsst/software/stack/conda/miniconda3-py37_4.8.2/envs/lsst-scipipe-1a1d771/1lib/python3.7/site-packages/
< sqlalchemy/engine/default.py", line 590, in do_execute
cursor.execute(statement, parameters)
psycopg?2.errors.UniqueViolation: duplicate key value violates unique constraint "
< dataset_collection_24cc_unq_dataset_type_id_collection_c55de2f4"
DETAIL: Key (dataset_type_id, collection_id, instrument, detector, visit)=(119, 60, HSC, 88, 1308) already exists.
File "/opt/lsst/software/stack/conda/miniconda3-py37_4.8.2/envs/1lsst-scipipe-1a1d771/1lib/python3.7/site-packages/
< sqlalchemy/engine/default.py", line 590, in do_execute
cursor.execute(statement, parameters)
sqlalchemy.exc.IntegrityError: (psycopg2.errors.UniqueViolation) duplicate key value violates unique constraint "
< dataset_collection_24cc_unq_dataset_type_id_collection_c55de2f4"
DETAIL: Key (dataset_type_id, collection_id, instrument, detector, visit)=(119, 60, HSC, 88, 1308) already exists.

lsst.daf.butler.registry._exceptions.ConflictingDefinitionError: A database constraint failure was triggered by inserting
< one or more datasets of type DatasetType(src, {abstract_filter, instrument, detector, physical_filter,
< visit_system, visit}, SourceCatalog) into collection 'hfc18'. This probably means a dataset with the same data ID
< and dataset type already exists, but it may also mean a dimension row is missing.

In the scenario that a pipeline job was killed after partial outputs were written due to a
machine shutdown, the follow-up process would redo the job and attempt to write all
outputs. Butler did not allow duplicate datasets nor overwriting existing datasets, hence
a conflict error occurred. This was expected and understood on preemptible machines;
DM-26131 discusses how to handle preemption notice with a possible shutdown script
and complete cleanup actions before the instance stops. However, machine reboot
can happen to regular machines too, and we encountered the same error occasionally.
Closer investigation revealed that shutdown of regular instances due to maintenance
events on the host machines can be mitigated with the live migrate option. Since we
started using the live migrate option we have not seen the issue. Furthermore, DM-
25818 removed the file existence check and allowed overwrite the stored file; the ticket
was merged after the w_2020_30 release.

3. Database size When we scaled up the number of workers without a sufficiently large
Postgres instance, we encountered database operational errors such as:

sqlalchemy.exc.OperationalError: (psycopg2.0OperationalError) FATAL: remaining connection slots are reserved for non-

< replication superuser connections

and

Failed to build graph: (psycopg2.errors.ConfigurationLimitExceeded) temporary file size exceeds temp_file_limit (1025563kB
<)

As the number of simultaneous connections increased, it was expected that the Postgres

instance needed to scale up. These errors disappeared once the machine CPUs, mem-

ory, or the database flags such as max_connections or temp_file_limit of the database

instance were increased.
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4. Other database issues There were more kinds of database operational errors, such as:

File "/opt/lsst/software/stack/conda/miniconda3-py37_4.8.2/envs/lsst-scipipe-1a1d771/1lib/python3.7/site-packages/
< sqlalchemy/engine/default.py", line 590, in do_execute
cursor.execute(statement, parameters)
psycopg2.0perationalError: server closed the connection unexpectedly
This probably means the server terminated abnormally
before or while processing the request.

sqlalchemy.exc.OperationalError: (psycopg2.OperationalError) could not connect to server: No such file or directory
Is the server running locally and accepting
connections on Unix domain socket "/var/run/cloud-sql-proxy/light-team-275220:us-centrall:drp-rc2-w30/.s.PGSQL
< .5432"7?

These errors appeared to reduce with a larger database size per maximum simultaneous
processes, but did not disappear completely. The source of the error remains unclear.
In the current stack, Butler expects a long-lived database connection during pipeline exe-
cution and connection pooling is disabled which might lead to unanticipated connection
churns (DM-26302). We also see errors from the rate limit of the Cloud SQL Admin API
calls. When worker instances are added to the HTCondor cluster by the instance group
autoscaling, there can be a surge of such Cloud SQL Admin API calls as the Cloud SQL
Proxy starts in each instance. It could be a quota limit or an issue in the code or config-
uration of the Google Cloud SQL Proxy, or something not yet considered. We intend to
investigate the source of the issue further.

5. Other rare transient errors For example, we occasionally saw

urllib3.exceptions.ProtocolError: ('Connection aborted.', OSError(@, 'Error'))
botocore.exceptions.ConnectionClosedError: Connection was closed before we received a valid response

It was very rare and likely within the expected service level. It could potentially be miti-
gated by retrying the call.

2.3 Cost Analysis

On GCP, the daily billing data can be exported to a BigQuery dataset and analysis can be done
through SQL queries.

2.3.1 GCS

The GCS charge is dominated by the data storage cost, which is $0.02 per GB per month for
standard storage. Storing 10 TB of the HSC-RC2 outputs costs $200 per month. As we oper-
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ate completely within the GCP in the same region, there is no egress charge. If we transferred
10 TB out of Google Cloud, it would cost around $1110 in the normal rate; but there is a spe-
cial offer to Internet2 Higher Education members and the National Research and Education
Network (GEANT NRENs) members, and data egress fees may be waived up to a maximum
discount of 15% of the total monthly Google Cloud fees. Besides storage costs, for each run
of the HSC-RC2 workflow the cost of read and write operations was typically less than $4.

2.3.2 Cloud sSQL

A PostgreSQL instance with 10 vCPUs, 65 GB of memory, and 15 GB of SSD storage was used
and cost around $23 per day while we ran the tests. Storage capacity can be incrementally
increased as needed.

2.3.3 Compute

Table E summarizes the compute cost of running the HSC-RC2 workflow in different setups.
The workflow wall time was likely dominated by non-deterministic factors such as which jobs
happened to fail and the size of the rescue workflow and is therefore not very meaningful
currently. Instances were also underutilized during the manual part of the workflow. For
example, the HTCondor cluster was left idle while the rescue workflow was made. We have
not optimized the overall usage. Based on our limited tests, using N2 gave some performance
boost with lower cost. Each run using preemptible N2 workers cost about $390.

2.3.4 Cost Comparison

We use the full run of the HSC-RC2 dataset with preemptible N2 workers to extrapolate the
cost. For each processing run through the DRP workflow, the total cost was roughly $390
(GCP) + $46 (Cloud SQL for 2 days) + $17 (GCS) = $453. Note that it included all 3 tracts of the
HSC-RC2 dataset, which was 4.5 times larger than the single-tract run used for cost analysis in
DMTN-137 with regard to the input raw CCD images. With the dataset size in consideration,
the run on GCP was roughly 6% more expensive than the estimated cost in DMTN-137. How-
ever, factors such as the database size, machine setups, manual intervention, and the rescue
workflow can easily cause a cost difference of more than 10%. For example, in the AWS PoC
we did not have a rescue workflow and only used the runs without failures. Less clock time
implied less cost from the database. If we only considered 1 day of Cloud SQL usage, the cost
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would be about the same as the estimated cost on AWS. In other words, the cost differences
on GCP and on AWS were not significant in our test runs if we only look at list pricing.

2.4 Future Work

As the HSC-RC2 dataset is much smaller than the original target size, we will continue to scale
up the data volume.

Other possible improvements include:

1. Use HTCondor Annex.
2. Use high-memory machine types.
3. Add native GCS Butler datastore rather than using its S3 interface.

4. Move the stagingsite. In this PoC we used the submit node as the staging site.
() found that moving the staging to S3 can lead to better performance and
reduce cost by 40-60 percent.

5. Improve failure recovery and eventually use retry features from the workflow manager.
Newer versions of the stack have some overwriting features.

6. Supply a shutdown script to handle the machine preemption (DM-26131). This might
require adding a pipetask feature to clean up the unfinished work.

7. Improve efficiency of the scripts and automate the manual parts of the execution.

8. Fully integrate pipeline logs into Google Logging.

2.5 Conclusions

Using a similar system architecture as the AWS PoC [], we were able to conduct
DRP test runs with a recent DM stack on GCP. We utilized HTCondor and multiple Google
Cloud products, including Compute Engine, Cloud Storage, Cloud SQL, and Operations Suite.
The number of simultaneous jobs peaked at 1600, the largest we have tested in the cloud
environments so far. Based on our test runs, the estimated cost on GCP is about the same
as the estimate on AWS. Note that this report is not intended to cover commercial discounts
and incentives which might change the pricing conclusion significantly.
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3 Data Transfer

The goal of this part of the proof of concept was to demonstrate operational-level transfers
of pixel data from hosts in Chile to Google Cloud. In particular, we wanted to show that high
bandwidths could be achieved with parallel transfers across multiple machines as well as low
latencies.

Previously [], images had been transferred similarly via a shared 10 Gbit/sec con-
nection to the public Internet using the gsutil tool. A net transfer bandwidth of 1.5 Gbit/sec
was achieved, but long startup times of over 5 sec made it infeasible to use this same mech-
anism for production.

This proof of concept attempted to do better in two ways: first, by using the Google Cloud
Storage API directly to better control the upload process and reuse existing TCP connections
and, second, by configuring a dedicated private interconnection between the Rubin Observa-
tory private long-haul network and the Google Cloud network, avoiding the public Internet.

3.1 Experimental Setup
3.1.1 Software

A test harness script was written in Python. This script does the following:

* Parses command line arguments

+ Uses fork to spawn one or more child processes, each of which independently execute
the steps below

+ Configures an uploader instance to connect to a storage destination

At configured intervals after a given start time:

- Copies a representative FITS file from disk to /tmp
- Compresses the FITS file in /tmp using fpack

- Uploads the resulting . fz file to the storage destination

Waits for all child processes to terminate
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* Enters an infinite loop awaiting manual termination

This software is available from https://github.com/1sst-dm/google-poc-2020/tree/master/apxfr.

A comparison was done between various compression options. Uncompressed, the data to
be transferred is 75,582,720 bytes. gzip -1 takes 1.45 sec (mean of 5 measurements) to
compress the data to 22,622,249 bytes. Copying the data and running fpack using the default
tiled Rice compression takes 0.35 sec (mean of 5 measurements) to compress the data to
15,137,280 bytes. fpack compression was thus used for all transfers.

3.1.2 Network Configuration

As prior tests had found that using a shared outbound network from the La Serena data center
as well as traversing the public Internet to reach Google Cloud services led to significant vari-
ation in data transfer times, for this proof of concept a private interconnect was established
between the Rubin Observatory long-haul network and the Google Cloud network. The two
networks shared a common point of presence at the Equinix colocation facility in Miami, so
it was relatively easy to arrange and configure a 10 Gbit/sec connection there. We gratefully
acknowledge significant assistance from Google personnel in encouraging Equinix to create
the interconnect in a short timeframe and giving clear directions for configuration.

The network links used for the tests therefore comprised:
* Local area network switches in the Base data center (10 Gbit/sec per machine)

* Main router in the Base data center

* Rubin long-haul network segments from La Serena to Miami (100 Gbit/sec)

Dedicated interconnect in Miami (10 Gbit/sec)

Google Cloud internal network from Miami to us-central1 region in lowa

A Cloud Router and VLAN were configured in the Google Cloud to advertise the Google VPC
network for the proof of concept project over the interconnect via BGP. A range of private IP
addresses for the Google Cloud Storage APl endpoint was configured into the Cloud Router as
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well so that routing to those addresses was guaranteed to traverse the desired links. Those
private IP addresses were configured into container or machine /etc/hosts files so that the
endpoint domain name (storage.googleapis.com) did not need to be changed in the client
software.

Note that the maximum transmission unit (MTU) size for the dedicated interconnect link is
limited to 1440 bytes by the Google router. Jumbo frames were not available on this link.

The measured (via ping) time to the Miami exit router is 158 milliseconds. The measured (via
ping) time to a virtual machine on the Cloud VPC network was 194 milliseconds. The measured
(via Google's perfdiag tool) connection time to Google's storage server for this network is
200 milliseconds.

3.1.3 TCP Configuration

The machines used for testing were configured to maximize TCP throughput given the very
high bandwidth-delay product (10 Gbit/sec x 200 millisec = 250 MB) for the network. In par-
ticular, the following sysctl variables were set:

* net.core.rmem_max 536870912

* net.core.wmem_max = 536870912

* net.ipv4.no_pmtu_disc = 0@

* net.ipv4.tcp_adv_win_scale = 1

* net.ipv4.tcp_congestion_control = htcp

* net.ipv4.tcp_rmem = 4096 87380 536870912

* net.ipv4.tcp_slow_start_after_idle = 0

* net.ipv4.tcp_wmem = 4096 87380 536870912

Path MTU discovery is required because the machines and LAN are otherwise configured for
jumbo frames.
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Window scaling is necessary to use large windows to avoid waiting for acknowledgements; the
increased rmem and wmem values set the maximum window size to be very large. An attempt to
find an appropriate window size was attempted using the iperf3 tool, but all specified window
sizes seemed to perform worse than the default, so no explicit tuning was done here.

H-TCP is an optimized congestion control algorithm for high speed networks with high latency.

Disabling TCP slow start after idle allows a single connection to maintain maximum through-
put even for bursty transmissions. An attempt was made to use TCP keepalive options at the
application level to maximize performance over a reused connection, but setting the HTTP-
Connection.default_socket_options did not seem to have any useful effect, so this was aban-
doned in favor of setting the net.ipv4.tcp_slow_start_after_idle = @ parameter mentioned
above. This reduced transfer times from about 2.5 seconds to about 1 second.

3.1.4 Kubernetes and Bare Metal

The transfer software harness was intended to be run from a Docker container deployed un-
der the management of Kubernetes. Scaling the deployment would be simple, with a variety
of options for constraining node placement and avoiding disruption to other services. Logs
could be collected from the cluster for analysis.

When this was found to cause excessive overhead, testing reverted to running on the "bare
metal” nodes directly from a local shell. (Note that these were the same nodes in the Kuber-
netes cluster, just accessed differently.)

3.2 Procedure

The harness script was run with options as follows:

* —-destination gsapi://bucketname/path

* ——numexp 5 or 10 (for statistics and to see if performance improved with the number of
transfers)

+ --interval 17 (to simulate the interval between exposures for ComCam and LSSTCam)

+ --compress (to use fpack as explained above)
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+ —--private (when running inside a container; not needed on bare metal)
* --ccds varying

* —--starttime varying

A start time a few minutes in the future was selected for each run, whether on a single node,
multiple nodes, or in Kubernetes, to ensure that all harness processes had started and were
synchronized for the first transfer.

The log messages from the script were captured, either via redirection of stderr or by a flu-
entd/ElasticSearch log capture mechanism. These were searched for the string “End transfer”
and the length in seconds of the transfer was extracted from those lines. Note that the (con-
stant) compression time is not included in these measurements.

Since latency to the delivery of the final pixel is the key performance metric in terms of the
delivery of Alerts, the maximum transfer time is highlighted, along with a simple conversion
to average bandwidth in bytes/sec by dividing this into the total bytes transferred. Minimum
and mean transfer times are also reported to give a sense of the distribution.

It was determined that the first of a sequence of transfers took substantially longer than the
subsequent ones. Initially, this was attributed to authentication overhead. Downloading a file
during initialization, before the first transfer, to “prime” the authentication did speed things
up a bit, but initial connections were still substantially slower (approximately 3 seconds). Itis
likely that this can be ameliorated by doing an upload before the first measured transfer, but
all analysis instead simply ignored the first transfer.

Attempts were made to run tests while the networks and nodes were otherwise unused and
quiescent, but it was not possible to rule out interference from local network traffic in the
La Serena switches and router. As a result, it is not necessarily possible to compare timings
from one set of tests to another, but it is believed that comparisons within a set of tests are
meaningful.

In addition, there have been reports of sporadic packet loss on the Rubin long-haul network
(IT-2362). These could be the cause of unusually long transfers, so occasional outliers were
removed from timings as described below.
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3.3 Results
3.3.1 Interconnect

It was determined that the private interconnect performed substantially better than the public
Internet, as expected. Not only were timings better, the variation in timings was also dramat-
ically lessened.

The following measurements were for a single CCD transferred from a single node, reusing
the TCP connection without slow start:

Connection Private Public
Minimum 0.96 4.07
Mean 0.98 4.46
Maximum 1.01 5.02

Bandwidth (Mbit/sec) 120 24
3.3.2 API

A comparison between the gsutil utility (version 4.53) and the Python Google Cloud Storage
API (version 1.28.1) was performed. Invoking a separate gsutil process for each transfer,
having to perform authentication each time, and being unable to reuse the connection proved
to be much slower, as expected. Using the gsutil cp -I option to specify a list of URLs
on stdin would allow connection reuse, but it forces the pathnames to be the same in the
source and destination, which is inconvenient for working with the Data Butler. Since the
same performance could be obtained with the Python API, along with more flexibility, use of
gsutil was abandoned, and the Python APl was used for all tests to Google Cloud Storage.

Tests were also done using the standard curl utility. Upload using curl to issue an HTTP POST
request took about the same amount of time (3.18 sec) as initial connections via the API. Note
that the authentication header was preloaded with a known token in the curl case. While curl
cannot easily be used to simulate a held-open connection with multiple files sent at intervals,
it was tested in a mode where two copies of the (compressed) file were sent back-to-back. This
took 4.04 sec, implying 0.86 sec for the second transfer. It is not unexpected that this might
be one round-trip-time faster than the standard case with a long interval between transfers.
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The 1.36 second maximum time for copying, compressing, and sending a CCD directly to
Google Cloud Storage via the Python API is well within the budget of 5 seconds allocated for
transfer from the DAQ to distributors at the US Data Facility. As a result, no further investiga-
tions of custom tooling for the transfer were needed.

3.3.3 Scaling to Multiple CCDs

A sequence of runs were done on a single node using multiple processes to transfer one CCD
per process.

CCDs 4 8 16 20 24
Minimum 0.78 0.77 0.76 0.78 0.77
Mean 096 093 095 1.00 1.02
Maximum 1.12 1.21 153 154 1.93

Bandwidth (Mbit/sec) 432 799 1270 1570 1500

Since the maximum transfer time started to increase and the aggregate bandwidth started to
decrease, no values above 24 were tested in this set.

Outliers of 3.44 and 7.80 seconds, respectively, were removed from the 8 and 16 CCD tests.

3.3.4 Scaling to Multiple Nodes

Nodes 1 1 1 1 2 3
CCDs/Node 1 10 20 30 10 10
Minimum 092 0.77 078 0.75 1.01 0.83
Mean 099 1.04 127 098 248 3.71
Maximum 113 197 176 137 520 1594

Bandwidth (Mbit/sec) 107 430 1000 2660 335 228

Outliers of 2.82, 2.41, and 7.22 seconds, respectively were removed from the 1/10, 1/20, and
2/10 tests.

Itis clear that the net bandwidth drops off drastically as more nodes are added. One possible
explanation is that congestion is occurring in the local network. It is also clear that even the
single-node timings, while broadly consistent within sets, have unexplained anomalies, but
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nevertheless they are well within the budgeted time window.

3.4 Future Work

The problem with using multiple transmitting nodes needs to be resolved. Potential conges-
tion and/or packet loss in the switches and routers will be investigated.

Comparisons with transmission to an object store at NCSA, the terminus of the Rubin long-
haul network, will be performed.

The Google Cloud destination VPC network and the storage bucket are located in lowa, which
is approximately 30 milliseconds further in network delay than South Carolina, the closest
data center to Miami. Testing with that location may show modest speed improvements.

3.5 Conclusions

The dedicated network and private interconnect have definitely improved the speed and con-
sistency of transfers. The timings from one node, even for as many as 20-30 CCDs, are well
within the necessary budget. But the inability to use multiple hosts to transfer data limits the
scalability of this solution. This issue would need to be resolved prior to production.
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B Acronyms

Acronym Description

API Application Programming Interface

AWS Amazon Web Services

BGP Border Gateway Protocol

CCcDh Charge-Coupled Device

CPU Central Processing Unit

ComCam The commissioning camera is a single-raft, 9-CCD camera that will be in-
stalled in LSST during commissioning, before the final camera is ready.

DAQ Data Acquisition System

DM Data Management

DMTN DM Technical Note

DRP Data Release Production

FITS Flexible Image Transport System

GB Gigabyte

GCE Google Compute Engine

GCP Google Cloud Platform

GCS Google Cloud Storage

HSC Hyper Suprime-Cam

HTTP HyperText Transfer Protocol

IAM Identity and Access Management

IDF Interim Data Facility

IP Internet Protocol

IT Information Technology

LAN Local Area Network

LSST Legacy Survey of Space and Time (formerly Large Synoptic Survey Tele-
scope)

MB MegaByte

MTU Maximum Transmission Unit

NCSA National Center for Supercomputing Applications

S3 (Amazon) Simple Storage Service

SQL Structured Query Language

SSD Solid-State Disk
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B TeraByte

TCP Transmission Control Protocol
us United States

VLAN Virtual Local Area Network
VPC Virtual Private Cloud

stdin standard input
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