Rubin Observatory

Vera C. Rubin Observatory
Data Management

Report of Google Cloud Proof of
Concept on DRP

Hsin-Fang Chiang
DMTN-157

Latest Revision: 2020-08-17

DRAFT

Report of Google Cloud Proof of Concept on DRP DMTN-157 Latest Revision 2020-08-17

Observator

Abstract

Report of the DRP part of the new Google Cloud Proof-of-Concept project

DRAFT ii DRAFT

Report of Google Cloud Proof of Concept on DRP DMTN-157 Latest Revision 2020-08-17

Observatory

Change Record

Version | Date Description Owner name
1 YYYY-MM- Unreleased. Hsin-Fang Chiang
DD

Document source location: https://github.com/1lsst-dm/dmtn-157

DRAFT ifi DRAFT

https://github.com/lsst-dm/dmtn-157

Report of Google Cloud Proof of Concept on DRP DMTN-157 Latest Revision 2020-08-17

Observator

Contents

1 Introduction 1

2 DRP Processing 1

—_—

R.1 System Architecture and Technology Stack v v oo o i i

D.2 EXeCUtON RESUILY . « o o o o o e e e e e e e e e
.21 TESLIUNT © o o o o e
R.2.2 Experienced Errors v v v v

R.3 COStANAIYSIS . « o v o e e e
..
R3.2 Cloud SQL . « o ot
R.3.3 COMPULE .« o v v o e e e e e e e
R.3.4 COStPIOJECHION . « o v o v e o e e e e e e e

D4 FULUre IMProVEMENT .« « o o o v e e e e e e e e e e e e e e

D5 SUMMANY o e e e e e e e e e e e

A References 8

9

00 00 N N N N o BN

DRAFT iv DRAFT

Report of Google Cloud Proof of Concept on DRP DMTN-157 Latest Revision 2020-08-17

Observatory

Report of Google Cloud Proof of Concept on DRP

1 Introduction

In spring 2020, we started the second Proof of Concept (PoC) engagement with the Google
Cloud team; see DMTN-150 for the plans. Section] reports on the Data Release Production
(DRP) processing in running batch jobs on preemptible instances and perform cost analysis

2 DRP Processing

2.1 System Architecture and Technology Stack

The overall system architecture is the same as in the AWS PoC; see . The LSST
Science Pipelines Software Stack contains the applications for image processing and anal-
ysis. A machine image based on the stack release together with other necessary software
is built using Packer scripts. The LSST Generation 3 Middleware, including Data Butler and
PipelineTask framework, is used for this PoC. The Butler datastore is a S3 compliant storage
on Google Cloud Storage (GCS); objects are accessed using the boto3 library. The Butler reg-
istry is a Google Cloud SQL PostgreSQL database. Credentials to access the GCS bucket and
the PostgreSQL instance are stored in Google Secret Manager; each machine retrieves the
credentials and stores them in its local environments.

Google Compute Engine (GCE) deployed via Terraform provides the compute resources. HT-
Condor is the underlying workload management system for batch jobs. Pegasus is used on
top of HTCondor for workflow submission and monitoring. The HTCondor pool is automati-
cally scaled with the load via a Managed Instance Group. The HTCondor execute machines, or
workers, can be either on-demand VMs or Preemptible VMs. HTCondor Annex is an alterna-
tive to acquire cloud compute resources, but we did not use HTCondor Annex yet in this PoC
due to time constraints (Sect @). The stackdriver-based Cloud Monitoring and the fluentd-
based Cloud Logging are turned on in the HTCondor cluster. Pipeline logs are also sent to
Cloud Logging, so we can search and examine logs in the Logs Viewer for troubleshooting.
(Note that the logging is not fully integrated yet, but is already useful.)

DRAFT 1 DRAFT

Report of Google Cloud Proof of Concept on DRP DMTN-157 Latest Revision 2020-08-17

Observatory

2.2 Execution Results
2.2.1 Test runs

Similar to DMTN-137, we first executed the ci_hsc workflow, scaled up to process one tract
HSC-RC2 dataset (DM-11345), and then the full HSC-RC2 dataset. So far, execution involved
some manual intervention steps and has not been fully automated yet. The overall steps were:
Butler repo setup, QuantumGraph generation, workflow generation, and job execution. To
create a Butler repo on GCP after creating the GCS bucket and the PostgresSQL database, the
bootstrap script at https://github.com/1sst-dm/gen3-hsc-rc2 was run from the Verification
Cluster located at NCSA to transfer the data to the GCS bucket and populate the Butler repo.
We did not optimize this step and it took around 40 hours for the full HSC-RC2 repo. It can
be improved by copying the data to the GCS first and creating the Butler repo from GCE. We
may also parallelize the ingestion process in the future.

In the Generation 3 Middleware, each executable unit is represented by a Quantum, and the
DRP workflow is represented as a Quantum Graph with Quanta interdependency. For the ex-
ecution workflow, we added one initialization job and translated Quanta into jobs in the Pega-
sus format with one-to-one mapping. For simplicity we considered all jobs of MakeWarpTask,
CompareWarpAssembleCoaddTask, DeblendCoaddSourcesSingleTask, and MeasureMerged-
CoaddSourcesTask as large-memory jobs and required 30GB of memory. Pegasus also added
other necessary jobs to the execution workflow, such as data transfer of Quantum files and
log files. We used the submit node as the staging site, in the same manner as the AWS PoC
[DMTN-137].

With the LSST software stack version w_2020_30, the tract tract=9615 contains 26688 Pipeline-
Task Quanta. Table E| shows an example run; this is comparable to Table 1 in DMTN-137 and
most differences were likely resulted from the LSST software stack version differences.

The full HSC-RC2 dataset contains 3 tracts and around 1.5TB of input data, including 767 GB
of raw images. Currently we ignore narrow bands, so there are 404 visits in total. One full
HSC-RC2 workflow generates around 10TB of output data. Using the stack version w_2020_30,
the QuantumGraph generation took around 13 hours for the full HSC-RC2 dataset, resulted
in 117388 Quanta in total in our test workflow. We excluded patches that were not covered
in all filters; this was a workaround as CompareWarpAssembleCoaddTask did not write out empty
images which were expected in the QuantumGraph workflow. The pipeline configurations

DRAFT 2 DRAFT

https://jira.lsstcorp.org/browse/DM-11345
https://github.com/lsst-dm/gen3-hsc-rc2

Report of Google Cloud Proof of Concept on DRP DMTN-157 Latest Revision 2020-08-17

Observatory

Task | Count | Mean Runtime (sec)

Init 1 27.0

IsrTask | 6765 58.6

CharacterizelmageTask | 6765 169.9
CalibrateTask | 6765 85.7

MakeWarpTask | 4206 68.6
CompareWarpAssembleCoaddTask 405 424.9
DetectCoaddSourcesTask 405 88.6
MergeDetectionsTask 81 152.6
DeblendCoaddSourcesSingleTask 405 276.1
MeasureMergedCoaddSourcesTask 405 2541.4
MergeMeasurementsTask 81 40.0
ForcedPhotCoaddTask 405 3780.1

Workflow wall time 8 hrs 52 mins

Cumulative job wall time 61 days 5 hrs

TaBLE 1. Task breakdown of the HSC-RC2 tract=9615 workflow for the 20200729T7200516
run. The mean runtime was the time spent on the resource as seen by Condor DAGMan.
The minimum runtime of the Pipetasks was 7.5 sec and the maximum was 6784.9 sec. The
software stack was w_2020_30.

can be found in https://github.com/1sst-dm/google-poc-drp. When the workflow did not fin-
ish fully in one submission, we made a rescue workflow to run in another submission. The
rescue workflow only contained failed jobs or their dependents. Making the rescue workflow
required a manual step using a temporary patch in the pipe_base package (DM-25809), and
took around 12 hours on one CPU. Table 2 shows an example for the full HSC-RC2 workflow.

For the computes, we tested with GCP's first generation general-purpose machine types (N1)
as well as the second generation general-purpose machine types (N2). N2 provides better
price-performanance and is used in the IDF quotes. More specifically, the N1 machine n1-
standard-8 with 8 vCPUs and 30 GB of memory, and the N2 machine n2-standard-8 with 8
vCPUs and 32 GB of memory were used.

The same HSC-RC2 workflow was run with multiple setups:

1. Using on-demand N1 VMs as workers. Maximum 800 CPUs (100 VMs) simultaneously.
2. Using on-demand N2 VMs as workers. Maximum 800 CPUs (100 VMs) simultaneously.
3. Using preemptible N1 VMs as workers. Maximum 1600 CPUs (200 VMs) simultaneously.

4. Using preemptible N2 VMs as workers. Maximum 1600 CPUs (200 VMs) simultaneously.

DRAFT 3 DRAFT

https://github.com/lsst-dm/google-poc-drp
https://jira.lsstcorp.org/browse/DM-25809

Report of Google Cloud Proof of Concept on DRP DMTN-157 Latest Revision 2020-08-17

Observatory

Task | Total Count | Count1 | Count2 | Mean Runtime (sec)

Init 1 1 80.0

IsrTask 30278 | 30278 1 55.0

CharacterizelmageTask 30278 | 30277 1 129.2
CalibrateTask 30278 | 30277 1 74.7

MakeWarpTask 20182 | 20180 2 74.0
CompareWarpAssembleCoaddTask 1180 1178 2 700.3
DetectCoaddSourcesTask 1180 1178 2 105.2
MergeDetectionsTask 236 234 2 143.5
DeblendCoaddSourcesSingleTask 1180 1170 10 651.3
MeasureMergedCoaddSourcesTask 1180 1170 10 4426.7
MergeMeasurementsTask 236 234 2 40.7
ForcedPhotCoaddTask 1180 1170 10 6327.9

TABLE 2: Example task breakdown of the full HSC-RC2 workflow. The mean runtime is
the time spent on the resource as seen by Condor DAGMan in the 20200804T005441 +
20200806T041934 run using on-demand n1-standard-8 machines. Count 1 is the count from
the first submission 20200804T005441; Count 2 is the count from the second, rescue sub-
mission 20200806T041934. One IsrTask failed in the first submission and was retried in the
second submission. The software stack was w_2020_30.

Run Setup Max CPUs Workflow walltime Cumulative job time Compute cost
20200731T011149+20200802T164424 regular NT workers 800 55 hrs 308 days $1592
20200804T005441+20200806T041934 preemptible N1 workers 1600 36 hrs 275 days, 22 hrs $459
20200806T215620+20200808T170615 preemptible N2 workers 1600 25 hrs 213 days, 10 hrs $390

20200811T172329 regular N2 workers 800 31 hrs 300 days, 2 hrs $1191
20200814T002816+20200816T060623 preemptible N2 workers 1600 29 hrs 208 days, 22 hrs $388

TABLE 3: Run summary of the HSC-RC2 workflow with different setups. The workflow wall
time only includes Pegasus records, and may be dominated by random job failures and the
rescue graph. The costs are overestimates. The Postgres instance size was increased be-
tween the 20200802T164424 run and the 20200804T005441 run; it stayed the same after-
wards.

Table E summarizes the compute time of the runs. Non-preemptible instances were used as
HTCondor master and submit nodes.

2.2.2 Experienced Errors

1. GCS403 HTTP error. Since we started large scale testing in early July, random 403 errors
were received when Butler made HeadObject calls:

botocore.exceptions.ClientError: An error occurred (403) when calling the HeadObject operation: Forbidden

The stack interpreted it as

PermissionError: Forbidden HEAD operation error occurred. Verify s3:ListBucket and s3:GetObject permissions are granted
< for your IAM user.

However, the permission setup was the same for all jobs but only a very small fraction

DRAFT 4 DRAFT

Report of Google Cloud Proof of Concept on DRP DMTN-157 Latest Revision 2020-08-17

Observatory

of jobs encountered this. Butler did a HeadObject to check if an object existed before
attempting to upload. If the object did not exist it expected a 404 error. At the time we
used the v20 stack and did not retry failed HTTP requests. (A request-level retry using the
backoff library was added by Dom Zippilli afterwards.) A Google Cloud Support Ticket
was filed to investigate the root cause, and concluded that there were transient issues
at the IAM server during the same timeframe. The instability of the IAM server was fixed
on July 22. We have not seen this error since.

2. Butler IntegrityError Conflicts of datasets were found occasionally when pipelines at-
tempted to write outputs, for example:
File "/opt/lsst/software/stack/conda/miniconda3-py37_4.8.2/envs/lsst-scipipe-1a1d771/1lib/python3.7/site-packages/
< sqlalchemy/engine/default.py", line 590, in do_execute
cursor.execute(statement, parameters)
psycopg2.errors.UniqueViolation: duplicate key value violates unique constraint "
< dataset_collection_24cc_unq_dataset_type_id_collection_c55de2f4"
DETAIL: Key (dataset_type_id, collection_id, instrument, detector, visit)=(119, 60, HSC, 88, 1308) already exists.
File "/opt/lsst/software/stack/conda/miniconda3-py37_4.8.2/envs/lsst-scipipe-1ald771/1ib/python3.7/site-packages/
< sqlalchemy/engine/default.py", line 590, in do_execute
cursor.execute(statement, parameters)
sqlalchemy.exc.IntegrityError: (psycopg2.errors.UniqueViolation) duplicate key value violates unique constraint "

< dataset_collection_24cc_unq_dataset_type_id_collection_c55de2f4"
DETAIL: Key (dataset_type_id, collection_id, instrument, detector, visit)=(119, 60, HSC, 88, 1308) already exists.

lsst.daf.butler.registry._exceptions.ConflictingDefinitionError: A database constraint failure was triggered by inserting
< one or more datasets of type DatasetType(src, {abstract_filter, instrument, detector, physical_filter,
< visit_system, visit}, SourceCatalog) into collection 'hfc18'. This probably means a dataset with the same data ID
< and dataset type already exists, but it may also mean a dimension row is missing.

In the scenario that a pipeline job was killed after partial outputs were written due to a
machine shutdown, the follow-up process would redo the job and attempt to write all
outputs. Butler did not allow duplicate datasets nor overwriting existing datasets, hence
a conflict error occurred. This was expected and understood on preemptible machines;
DM-26131 discusses how to handle preemption notice with a possible shutdown script
and complete cleanup actions before the instance stops. However, machine reboot
can happen to regular machines too and we encountered the same error occasionally.
Closer investigation revealed that shutdown of regular instances due to maintenance
events on the host machines can be mitigated with the live migrate option. Since we
started using the live migrate option we have not seen the issue. Furthermore, DM-
25818 removed the file existence check and allowed overwrite the stored file; the ticket
was merged after the w_2020_30 release.

3. Database size When we scaled up the number of workers without a sufficiently large
Postgres instance, we encountered database operational errors such as:

DRAFT 5 DRAFT

https://jira.lsstcorp.org/browse/DM-26131
https://jira.lsstcorp.org/browse/DM-25818
https://jira.lsstcorp.org/browse/DM-25818

Report of Google Cloud Proof of Concept on DRP DMTN-157 Latest Revision 2020-08-17

Observatory

sqlalchemy.exc.OperationalError: (psycopg2.0OperationalError) FATAL: remaining connection slots are reserved for non-
< replication superuser connections

and

Failed to build graph: (psycopg2.errors.ConfigurationLimitExceeded) temporary file size exceeds temp_file_limit (1025563kB
<)

As the number of simultaneous connections increased, it was expected that the Postgres

instance needed to scale up. These errors disappeared once the machine CPUs, mem-

ory, or the database flags such as max_connections or temp_file_limit of the database

instance were increased.

4. Other database issues There were more kinds of database operational errors, such as:

File "/opt/lsst/software/stack/conda/miniconda3-py37_4.8.2/envs/lsst-scipipe-1ald771/1ib/python3.7/site-packages/
< sqlalchemy/engine/default.py", line 590, in do_execute
cursor.execute(statement, parameters)
psycopg2.0perationalError: server closed the connection unexpectedly
This probably means the server terminated abnormally
before or while processing the request.

sqlalchemy.exc.OperationalError: (psycopg2.OperationalError) could not connect to server: No such file or directory
Is the server running locally and accepting
connections on Unix domain socket "/var/run/cloud-sql-proxy/light-team-275220:us-centrall:drp-rc2-w30/.s.PGSQL
< .5432"?

These errors appeared to reduce with a larger database size per maximum simultaneous
processes, but did not disappear completely. We continue to investigate this issue.

5. Other rare transient errors For example, we occasionally saw

urllib3.exceptions.ProtocolError: ('Connection aborted.', OSError(@, 'Error'))
botocore.exceptions.ConnectionClosedError: Connection was closed before we received a valid response

It was very rare and working as expected.

2.3 Cost Analysis

On GCP, the daily billing data can be exported to a BigQuery dataset and analysis can be done
through SQL queries.

DRAFT 6 DRAFT

Report of Google Cloud Proof of Concept on DRP DMTN-157 Latest Revision 2020-08-17

Observatory

2.3.1 GCS

The GCS charge is dominated by the data storage cost, which is $0.02 per GB per month for
standard storage. Storing 10 TB of the HSC-RC2 outputs costs $200 per month. As we operate
completely within the GCP in the same region, there is no egress charge. If we transferred 10
TB out of Google Cloud, it would cost around $1110. For each run of HSC-RC2 workflow, the
operations usage was typically less than $4.

2.3.2 Cloud sSQL

A PostgreSQL instance with 10 vCPUs, 65 GB of memory, and 15 GB of SSD storage was used
and cost around $23 per day while we ran the tests. Storage capacity can be incrementally
increased as needed.

2.3.3 Compute

Table E summarizes the compute cost of running the HSC-RC2 workflow in different setups.
The workflow wall time was likely dominated by non-deterministic factors such as which jobs
happened to fail and the size of the rescue workflow, therefore not very meaningful currently.
Instances were also underutilized during to the manual part of the workflow. For example, the
HTCondor cluster was left idle while the rescue workflow was made. We have not optimized
the overall usage. Based on our limited tests, using N2 gave some performance boost with
lower cost. Each run using preemptible N2 workers cost about $390.

2.3.4 Cost projection

We use the full run of the HSC-RC2 dataset with preemptible N2 workers to extrapolate the
cost. For each processing run through the DRP workflow, the total cost was roughly $390
(GCP) + $46 (Cloud SQL for 2 days) + $17 (GCS) = $453. Note that it included all 3 tracts of the
HSC-RC2 dataset, which was 4.5 times larger than the single-tract run used for cost analysis in
DMTN-137 with regard to the input raw CCD images. With the dataset size in consideration,
the run on GCP was roughly 6% more expensive than the estimated cost in DMTN-137. How-
ever, factors such as the database size, machine setups, manual intervention, and the rescue
workflow can easily cause more than 10% of differences in cost. For example, in the AWS PoC
we did not have a rescue workflow and only used the runs without failures. Less clock time

DRAFT 7 DRAFT

Report of Google Cloud Proof of Concept on DRP DMTN-157 Latest Revision 2020-08-17

Observatory

implied less cost from the database. If we only considered 1 day of Cloud SQL usage, the cost
would be about the same as the estimated cost on AWS. In other words, the cost differences
on GCP and on AWS were not significant in our test runs.

2.4 Future Improvement

Possible improvements include:

1. Use HTCondor Annex.
2. Use high-memory machine types.

3. Move the stagingsite. In this PoC we used the submit node as the staging site. Bektesevic
et al. found that moving the staging to S3 can lead to better performance and reduce
cost by 40-60 percent.

4. Better failure recovery. New stack has some overwriting features. We can also supply a
shutdown script to handle the preemption.

5. Improve efficiency of the scripts and automate the manual parts of the execution

2.5 Summary

Using a similar system architecture from the AWS PoC [], we were able to conduct
DRP test runs with a recent DM stack on GCP. The number of simultaneous jobs peaked at
1600, the largest we have tested in the cloud environments so far. Based on our test runs,
the estimated cost on GCP is about the same as the estimate on AWS.

A References

[DMTN-137], Chiang, H.F., Bektesevic, D., the AWS-PoC team, 2020, AWS Proof of Concept
Project Report, DMTN-137, URL http://DMTN-137.1sst.io

DRAFT 8 DRAFT

http://DMTN-137.lsst.io

Report of Google Cloud Proof of Concept on DRP DMTN-157 Latest Revision 2020-08-17

Observator

[DMTN-150], Lim, K.T., 2020, LSST + Google Cloud Proof of Concept, DMTN-150, URL http:
//DMTN-150.1sst.i0

B Acronyms

DRAFT 9 DRAFT

http://DMTN-150.lsst.io
http://DMTN-150.lsst.io

	Introduction
	DRP Processing
	System Architecture and Technology Stack
	Execution Results
	Test runs
	Experienced Errors

	Cost Analysis
	GCS
	Cloud SQL
	Compute
	Cost projection

	Future Improvement
	Summary

	References
	Acronyms

